
Abstract: Graphics Processing Unit (GPU) can provide
remarkable performance gains when compared to Central
Processing Unit (CPU) for computational intensive
application. GPU has acquired programmability to perform
general purpose computation fast by running ten thousands of
threads concurrently. The GPU can be used not only for
processing graphics but also for high speed computing. GPU
uses the SIMD, that same portion of code will be executed in
parallel and applied to various elements of a data set. Thus
they are more attractive to be used as dedicated hardware in
many fields such as machine learning. Training in a
multilayer neural network with back-propagation is usually
time consuming process. This paper describes the GPU
parallelization of back-propagation neural network. The GPU
can be used not only for processing but also for high speed
computing.

Keywords: GPU, Back-Propagation Algorithm, Neural
Network, Parallel Computing.

I. INTRODUCTION

The GPU hardware contains many execution cores
which can be used for high demanding graphics application
[1]. One of the most popular GPU brand is the NVIDIA
graphics card. The GPU is graphics processing unit which
perform the operation in parallel. The GPU is work in
neural network to perform the operation. GPU have
different memory location. The popular machine learning
model such as Extreme Learning Machine (ELM) and
support vector Machine have been implemented on GPU
parallel processing. The global memory is basic
communication area the CPU and GPU which is accessible
from all the thread but has a long latency time. Each
streaming processors (sp) memory is very fast and the
entire variable defined in this memory can be accessed by
all block. Apart from these two memories, there are also
constant memory and texture memory which are
specifically designed for different purpose. A kernel the
program executed by device, is run in parallel using large
number of thread.

Training an artificial neural network is time
consuming due the large number of epochs and weight
updates required to reach an optimal performance. So then
it made to increase the convergence speed or to reduce the
computational cost [2]. Artificial neural network are widely
used for data mining and pattern recognition [3]. Pattern
classification deals with the problem of identifying
underlying structure of data. Nowadays fuzzy logic based
techniques interest in neurofuzzy pattern recognition
systems [4]. Back-propagation neural network uses the
supervised learning for training. Parallelization of ANN
execution the problem of slow ANN execution can be
somehow mitigated by using the modern microprocessor
architectures. Instruction set of the modern microprocessor
contains instructions for used multiply-and-add operations.

In this case, multiplication and addition within a synapse
are performed at the same time. Sometimes several
instructions can be executed simultaneously. In addition,
the multi-core architectures of modern microprocessor can
be utilized. The processing effort can be divided among
different cores. However, the number of cores is relatively
small and the speed-up would also be small.

A group of neurons is used to process a part of
data from the input data layer. The neurons are grouped
together in such a way that minimizes the amount data that
must be
read. In this way, the same data can be used with several
neurons at the same time. This minimizes the number of
memory access cycles where the data can only be read
serially. When the neurons have finished their job, another
patch of input area is processed [5][6]. If necessary, another
set of weights is used. Several groups of neurons can be
executed in parallel by different processing cores. In the
hardware implementation as well as with the CUDA
solution, each neuron from a group is processed
simultaneously with the others. An attempt was also made
to parallelize the training of a multi-layer ANN using back-
propagation learning algorithm. It was found that much less
parallelization of the code is possible. First of all the
training is done in repetitive cycles where different training
patterns are exposed to the net. Because of the nature of the
back propagation, the layers had to be evaluated one-by-
one the results from just one of the layers influenced the
evaluation of others.

The training and execution of ANN is performed
in three steps as preparation of the initial data, transfer of
the data to the CUDA device, evocation of the kernel
routine and transfer of the result to the host. The same data
may be evaluated using several kernels sequentially and
data transfer operations may overlap with the kernel
execution [7]. It is also feasible to distribute the workload
between several CUDA devices. The upper-end graphical
cards incorporate two GPUs, which can be used as two
independent CUDA devices.

II. GPU ARCHITECTURE

When the programmer wants to process some data on the
GPU, it loads the data in the GPU’s global memory,
processes it and copies the result back to the CPU [1]. GPU
architecture is as shown in Figure 1. Each block declares an
array of shared memory. Each thread inside the block will
multiply one input (IN) with one weight (WN) and store the
result in the shared memory array, and then when all the
threads are done, they will work together to reduce the
shared memory array in a single sum, which will then go
through an activation function. This in our case is a
sigmoid function, and this result will be stored in the
hidden node that this block calculates. Every block does the

GPU Parallelization of Neural Network
Snehal	M.Waghଵ, Prof. Dipti	Pawarଶ

Dept. of Computer Eng., Sinhgad College of Engg. Pune. India1,2

Snehal M. Wagh et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 9 (2) , 2018, 31-34

www.ijcsit.com 31

ISSN:0975-9646

same thing, and in this way each block calculates each
hidden node in parallel. The factors in GPU structure
contains.

Figure1. A block diagram of the GPU architecture

The Grid
A grid is a group of threads all running the same kernel.
These threads are not synchronized. Every call to CUDA
from CPU is made through one grid. Starting a grid on
CPU is a synchronous operation but multiple grids can run
at once. On multi-GPU systems, grids cannot be shared
between GPUs because they use several grids for maximum
efficiency.
The Block
Grids are composed of blocks. Each block is a logical unit
containing a number of coordinating threads, a certain
amount of shared memory. Just as grids are not shared
between GPUs, blocks are not shared between
multiprocessors. All blocks in a grid use t 6the same
program. A built in variable "blockIdx" can be used to
identify the current block. Block IDs can be 1D or 2D
(based on grid dimension). Usually there are 65,535 blocks
in a GPU.
The Thread
Blocks are composed of threads. Threads are run on the
individual cores of the multiprocessors, but unlike grids
and blocks, they are not restricted to a single core. Like
blocks, each thread has an ID (threadIdx). Thread IDs can
be 1D, 2D or 3D (based on block dimension). The thread id
is relative to the block it is in. Threads have a certain
amount of register memory. Usually there can be 512
threads per block.
Global memory
It is a read and writes memory. It is slow and uncached and
requires sequential & aligned 16 byte reads and writes to be
fast (coalesced read/write).
Texture memory
It is a read only memory. Its cache optimized for 2D spatial
access pattern.
Constant memory
This is where constants and kernel arguments are stored. It
is slow, but with cache.

Shared memory
All threads in a block can use shared memory for read or
write operations. It is common for all threads in a block and
its size is smaller than global memory. The number of
threads that can be executed simultaneously in a block is
determined the shared memory that is specified and it
denotes the occupancy of that block.
Local memory
It is generally used for whatever does not fit into registers.
It is slow and uncached, but allows automatic coalesced
reads and writes.
Registers
This is likely the fastest memory available. One set of
register memory I given to each thread and it uses them for
fast storage and retrieval of data like counters, which are
frequently used by a thread.

III. BACK-PROPAGATION ALGORITHM
An artificial neural network is an information processing
system with certain performance characteristics in common
with biological neural network. In the back-propagation
neural network neurons are interconnected with each other
as shown in Figure 2. The back-propagation algorithm
consists of two phase which is testing and training. In the
feed forward pass an input vector is presented to a network
and propagated forward to the output. In back-propagation
phase the network output is compared to the desired output,
network weights are then adjusted in accordance with an
error correction rule [8].

 Figure2. Back-propagation neural network

To adjust the weights and biases of the neural

network, a standard back-propagation algorithm is used
[8][9]. The first step is to apply the input image into the
network and calculate its output. This will give you an error
that will be used for back-propagation. To calculate the
error, the following equation is used.
 E = O(1 - 0) (Target - 0)
(1)
Where E is the error, O is the output of the network, and
target is the desired output of the network i.e. if the image
contains a quad rotor, 0 otherwise. After getting the error,
the next step is to correct the weights of the output neuron.
To do this, we use equation 2.
 Wnew=Wold + LR * (E * Ohidden) (2)

Snehal M. Wagh et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 9 (2) , 2018, 31-34

www.ijcsit.com 32

Where Ohidden is the output of the hidden layer neuron
which the weight being calculated is associated with LR is
called the learning rate, a parameter between 0 and 1 that is
used to adjust the rate at which the neural network is
trained.

A higher learning rate means that the neural
network will learn faster, however, a learning rate too high
may lead to instability of the network. After changing the
weights of the output layer, the next step is to change the
weights associated with the hidden layer. First, it get the
error of the hidden layer. However, this is not as
straightforward as getting the error for the output layer
because no target for the hidden layer i.e. we do not know
what its correct value must be. Therefore, we use the
equation

Error = Ohidden(l - Ohidden)(E * Wnew) (3)
Where E is the error of the output neuron calculated in
equation 1 and W new is the output layer weight associated
with that hidden neuron. After getting the errors for the
hidden layer neurons, use equation 2 to get the new
weights. The input vector is composed of Hu & Zernike
moments of each level of gray and geodesic descriptors on
binary image to form input of the Artificial neural network
which is used for object recognition [10]. The extracted
vectors are put together to form a unique input data to the
neural network for object recognition.

IV. GPU PARALLELIZATION OF BACK-PROPAGATION

NEURAL NETWORK
GPU operates as a highly multi-threaded co-processor
(device) to CPU (host). While CPU is responsible for
sequential computing and logical transaction, GPU is
specialized for compute-intensive, highly parallel
computation. The original BP algorithm is describes in
detail [3]. BPN is constructed of one input layer, one output
layer and one or more hidden layers with connection
between adjacent layers. A vector of neurons and a matrix
of weights together with an activation function are called a
layer. This procedure is replaced with many 2-dimensional
matrixes assignment naturally.
At last, we summarize following solutions or principles [1]:
1. Read the data and label data.

2. Initialize the weights randomly.

3. Copy the weights to the GPU.

4. Copy the input to the GPU.

5. Initialize the neural network.

6. Call the feed-forward kernel (input to hidden layer)—
533 × 784 threads.

7. Call the feed-forward kernel (hidden to output layer)—
10 × 533 threads.

8. Call the kernel to calculate the deltas—533 threads.

9. Call the kernel to update the weights (input to hidden)—
533 × 784 threads.

10. Call the kernel to update the weights (hidden to
output)—533 × 10 threads.

Figure 3. Overall flow of Back-Propagation Network on
GPU

In Figure 3 shows the program execution flow of back-
propagation neural network on GPU [3]. The feed-forward
process has two kernels, one for calculating the hidden
nodes (Feed-ForwardIH) and another for calculating the
output nodes (Feed-ForwardHO).
 The back-propagation phase consists of the following three
functions:
1. DeltaCalculation- This function calculates the errors in

the output layer and hidden layers, so we call it with 1
block containing threads equal to the number of nodes
in the hidden layer, and we use these threads to
calculate the errors (called deltas) in the hidden and
output layers. These deltas will be used to update the
weights in the layers of the GPU-enabled BP-ANN.

2. UpdateInputWeights- This function updates the
weights that connect the input layer to the hidden
layer. So we launch a number of blocks equal to the
number of hidden nodes, and each block has a number
of threads equal to the number of input nodes. Each
block is executed in parallel and inside each block, the
threads update the weights in parallel.

3. UpdateHiddenWeighs- This function updates the
weights that connect the hidden layer to the output
layer. So we launch a number of blocks equal to the
number of output nodes, and each block has a number
of threads equal to the number of hidden nodes. Each
block is executed in parallel, and inside each block the
threads update the weights in parallel.

V. CONCLUSION

The training phase of neural network is very time
consuming due to the large number of epochs and weight
updates required to reach an optimal performance. GPU
parallelization of neural network reduces the training time.
GPU can improve the speed in comparison to the CPU
version of neural network. If we need to do training on a
dataset with small number of attributes the CPU version is
better. GPU should only be used the data to be processed
has large number of attributes to benefit a parallelism from
GPU.

Snehal M. Wagh et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 9 (2) , 2018, 31-34

www.ijcsit.com 33

REFERENCES
[1] Ricardo Brito, Simon Fong, Kyungeun Cho, Wei Song, Raymond

Wong, Sabah Mohammed, Jinan Fiaidhi, “GPU-enabled back-
propagation artificial neural network for digit recognition in parallel”,
Springer Science and Business Media New York 10 feb 2016.

[2] Xavier Sierra-Canto, Francisco Madera-Ramirez, Victor Uc-Cetina,
“Parallel Training of a Back-Propagation Neural Network using
CUDA”, IEEE Ninth International Conference on Machine Learning
and Applications 2010.

[3] Yaobin Wang, Pingping Tang, Hong An, Zhiqin Liu, Kun Wang and
Yong Zhou, “Optimization and Analysis of Parallel Back Propagation
Neural Network on GPU Using CUDA”, Springer International
Publishing Switzerland S. Arik et al. (Eds.): ICONIP, Part III, pp.
156-163, 2015.

[4] Dipti Pawar, “Fuzzy Min-Max Neural Network with Compensatory
Neuron Architecture for Invariant Object Recognition”, IEEE
International Conference on Computer, Communication and Control,
2015.

[5] Jinfeng Liu and Lei Guo, “Implementation of Neural Network Back-
propagation in CUDA”. Springer-Verlag Berlin Heidelberg of
Intelligence Computation and Evolutionary Computation, AISC 180,
pp. 1021-1027, 2013.

[6] Altaf Ahmad Huqqani, Erich Schikuta, Sicen Yea, Peng Chen.
“Multicore and GPU Parallelization of Neural Networks for Face
Recognition”, Computer Science International Conference on
Computational Science, pp: 349 – 358, 2013.

[7] Domen Verber “Implementation of Massive Artificial Neural
Networks with CUDA”. University of Maribor Slovenia.

[8] Reiichiro Christian S. Nakano, Argel Bandala, Gerard Ely Faelden,
Jose Martin Maningo, Elmer P. Dadios.“Implementation of an
Artificial Neural Network in Recognizing In-flight Quadrotor
Images” IEEE 2015.

[9] Jayshree Ghorpade, Jitendra Parande, Madhura Kulkarni, Amit
Bawaskar, “GPGPU Processing In Cuda Architecture” Advanced
Computing: An International Journal (ACIJ), Vol.3, No.1, January
2012.

[10] Shilpa Bane, D. R. Pawar, “Survey on Feature Extraction methods in
Object Recognition”, International Journal of Computer Science and
Information Technologies, vol, 5, pp. 3224–3226, 2014.

Snehal M. Wagh et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 9 (2) , 2018, 31-34

www.ijcsit.com 34

