
Abstract: Graphics Processing Unit (GPU) can provide 
remarkable performance gains when compared to Central 
Processing Unit (CPU) for computational intensive 
application. GPU has acquired programmability to perform 
general purpose computation fast by running ten thousands of 
threads concurrently. The GPU can be used not only for 
processing graphics but also for high speed computing. GPU 
uses the SIMD, that same portion of code will be executed in 
parallel and applied to various elements of a data set. Thus 
they are more attractive to be used as dedicated hardware in 
many fields such as machine learning. Training in a 
multilayer neural network with back-propagation is usually 
time consuming process. This paper describes the GPU 
parallelization of back-propagation neural network. The GPU 
can be used not only for processing but also for high speed 
computing. 
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I. INTRODUCTION

The GPU hardware contains many execution cores 
which can be used for high demanding graphics application 
[1]. One of the most popular GPU brand is the NVIDIA 
graphics card. The GPU is graphics processing unit which 
perform the operation in parallel. The GPU is work in 
neural network to perform the operation. GPU have 
different memory location. The popular machine learning 
model such as Extreme Learning Machine (ELM) and 
support vector Machine have been implemented on GPU 
parallel processing. The global memory is basic 
communication area the CPU and GPU which is accessible 
from all the thread but has a long latency time. Each 
streaming processors (sp) memory is very fast and the 
entire variable defined in this memory can be accessed by 
all block. Apart from these two   memories, there are also 
constant memory and texture memory which are 
specifically designed for different purpose. A kernel the 
program executed by device, is run in parallel using large 
number of thread. 

Training an artificial neural network is time 
consuming due the large number of epochs and weight 
updates required to reach an optimal performance. So then 
it made to increase the convergence speed or to reduce the 
computational cost [2]. Artificial neural network are widely 
used for data mining and pattern recognition [3]. Pattern 
classification deals with the problem of identifying 
underlying structure of data. Nowadays fuzzy logic based 
techniques interest in neurofuzzy pattern recognition 
systems [4]. Back-propagation neural network uses the 
supervised learning for training. Parallelization of ANN 
execution the problem of slow ANN execution can be 
somehow mitigated by using the modern microprocessor 
architectures. Instruction set of the modern microprocessor 
contains instructions for used multiply-and-add operations. 

In this case, multiplication and addition within a synapse 
are performed at the same time. Sometimes several 
instructions can be executed simultaneously. In addition, 
the multi-core architectures of modern microprocessor can 
be utilized. The processing effort can be divided among 
different cores. However, the number of cores is relatively 
small and the speed-up would also be small.  

A group of neurons is used to process a part of 
data from the input data layer. The neurons are grouped 
together in such a way that minimizes the amount data that 
must be  
read. In this way, the same data can be used with several 
neurons at the same time. This minimizes the number of 
memory access cycles where the data can only be read 
serially. When the neurons have finished their job, another 
patch of input area is processed [5][6]. If necessary, another 
set of weights is used. Several groups of neurons can be 
executed in parallel by different processing cores. In the 
hardware implementation as well as with the CUDA 
solution, each neuron from a group is processed 
simultaneously with the others. An attempt was also made 
to parallelize the training of a multi-layer ANN using back-
propagation learning algorithm. It was found that much less 
parallelization of the code is possible. First of all the 
training is done in repetitive cycles where different training 
patterns are exposed to the net. Because of the nature of the 
back propagation, the layers had to be evaluated one-by-
one the results from just one of the layers influenced the 
evaluation of others. 

The training and execution of ANN is performed 
in three steps as preparation of the initial data, transfer of 
the data to the CUDA device, evocation of the kernel 
routine and transfer of the result to the host. The same data 
may be evaluated using several kernels sequentially and 
data transfer operations may overlap with the kernel 
execution [7]. It is also feasible to distribute the workload 
between several CUDA devices. The upper-end graphical 
cards incorporate two GPUs, which can be used as two 
independent CUDA devices. 

II. GPU ARCHITECTURE

When the programmer wants to process some data on the 
GPU, it loads the data in the GPU’s global memory, 
processes it and copies the result back to the CPU [1]. GPU 
architecture is as shown in Figure 1. Each block declares an 
array of shared memory. Each thread inside the block will 
multiply one input (IN) with one weight (WN) and store the 
result in the shared memory array, and then when all the 
threads are done, they will work together to reduce the 
shared memory array in a single sum, which will then go 
through an activation function. This in our case is a 
sigmoid function, and this result will be stored in the 
hidden node that this block calculates. Every block does the 
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same thing, and in this way each block calculates each 
hidden node in parallel. The factors in GPU structure 
contains. 
 

 
Figure1. A block diagram of the GPU architecture 

 
The Grid 
A grid is a group of threads all running the same kernel. 
These threads are not synchronized. Every call to CUDA 
from CPU is made through one grid. Starting a grid on 
CPU is a synchronous operation but multiple grids can run 
at once. On multi-GPU systems, grids cannot be shared 
between GPUs because they use several grids for maximum 
efficiency. 
The Block 
Grids are composed of blocks. Each block is a logical unit 
containing a number of coordinating threads, a certain 
amount of shared memory. Just as grids are not shared 
between GPUs, blocks are not shared between 
multiprocessors. All blocks in a grid use t 6the same 
program. A built in variable "blockIdx" can be used to 
identify the current block. Block IDs can be 1D or 2D 
(based on grid dimension). Usually there are 65,535 blocks 
in a GPU. 
The Thread 
Blocks are composed of threads. Threads are run on the 
individual cores of the multiprocessors, but unlike grids 
and blocks, they are not restricted to a single core. Like 
blocks, each thread has an ID (threadIdx). Thread IDs can 
be 1D, 2D or 3D (based on block dimension). The thread id 
is relative to the block it is in. Threads have a certain 
amount of register memory. Usually there can be 512 
threads per block. 
Global memory  
It is a read and writes memory. It is slow and uncached and 
requires sequential & aligned 16 byte reads and writes to be 
fast (coalesced read/write). 
Texture memory 
It is a read only memory. Its cache optimized for 2D spatial 
access pattern. 
Constant memory 
This is where constants and kernel arguments are stored. It 
is slow, but with cache. 

Shared memory 
All threads in a block can use shared memory for read or 
write operations. It is common for all threads in a block and 
its size is smaller than global memory. The number of 
threads that can be executed simultaneously in a block is 
determined the shared memory that is specified and it 
denotes the occupancy of that block. 
Local memory 
It is generally used for whatever does not fit into registers. 
It is slow and uncached, but allows automatic coalesced 
reads and writes. 
Registers 
This is likely the fastest memory available. One set of 
register memory I given to each thread and it uses them for 
fast storage and retrieval of data like counters, which are 
frequently used by a thread. 
 

III. BACK-PROPAGATION ALGORITHM 
An artificial neural network is an information processing 
system with certain performance characteristics in common 
with biological neural network. In the back-propagation 
neural network neurons are interconnected with each other 
as shown in Figure 2. The back-propagation algorithm 
consists of two phase which is testing and training. In the 
feed forward pass an input vector is presented to a network 
and propagated forward to the output. In back-propagation 
phase the network output is compared to the desired output, 
network weights are then adjusted in accordance with an 
error correction rule [8]. 
                       

 
             Figure2. Back-propagation neural network 

 
To adjust the weights and biases of the neural 

network, a standard back-propagation algorithm is used 
[8][9]. The first step is to apply the input image into the 
network and calculate its output. This will give you an error 
that will be used for back-propagation. To calculate the 
error, the following equation is used. 
        E = O(1 - 0) (Target - 0)                     
(1) 
Where E is the error, O is the output of the network, and 
target is the desired output of the network i.e. if the image 
contains a quad rotor, 0 otherwise. After getting the error, 
the next step is to correct the weights of the output neuron. 
To do this, we use equation 2. 
                     Wnew=Wold + LR * (E * Ohidden)     (2)                            
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Where Ohidden is the output of the hidden layer neuron 
which the weight being calculated is associated with LR is 
called the learning rate, a parameter between 0 and 1 that is 
used to adjust the rate at which the neural network is 
trained.  

A higher learning rate means that the neural 
network will learn faster, however, a learning rate too high 
may lead to instability of the network. After changing the 
weights of the output layer, the next step is to change the 
weights associated with the hidden layer. First, it get the 
error of the hidden layer. However, this is not as 
straightforward as getting the error for the output layer 
because no target for the hidden layer i.e. we do not know 
what its correct value must be. Therefore, we use the 
equation 

Error = Ohidden(l - Ohidden)(E * Wnew)      (3)                              
Where E is the error of the output neuron calculated in 
equation 1 and W new is the output layer weight associated 
with that hidden neuron. After getting the errors for the 
hidden layer neurons, use equation 2 to get the new 
weights. The input vector is composed of Hu & Zernike 
moments of each level of gray and geodesic descriptors on 
binary image to form input of the Artificial neural network 
which is used for object recognition [10]. The extracted 
vectors are put together to form a unique input data to the 
neural network for object recognition. 

IV. GPU PARALLELIZATION OF BACK-PROPAGATION

NEURAL NETWORK 
GPU operates as a highly multi-threaded co-processor 
(device) to CPU (host). While CPU is responsible for 
sequential computing and logical transaction, GPU is 
specialized for compute-intensive, highly parallel 
computation. The original BP algorithm is describes in 
detail [3]. BPN is constructed of one input layer, one output 
layer and one or more hidden layers with connection 
between adjacent layers. A vector of neurons and a matrix 
of weights together with an activation function are called a 
layer. This procedure is replaced with many 2-dimensional 
matrixes assignment naturally. 
At last, we summarize following solutions or principles [1]: 
1. Read the data and label data.

2. Initialize the weights randomly.

3. Copy the weights to the GPU.

4. Copy the input to the GPU.

5. Initialize the neural network.

6. Call the feed-forward kernel (input to hidden layer)—
533 × 784 threads.

7. Call the feed-forward kernel (hidden to output layer)—
10 × 533 threads.

8. Call the kernel to calculate the deltas—533 threads.

9. Call the kernel to update the weights (input to hidden)—
533 × 784 threads.

10. Call the kernel to update the weights (hidden to
output)—533 × 10 threads.

Figure 3. Overall flow of Back-Propagation Network on 
GPU 

In Figure 3 shows the program execution flow of back-
propagation neural network on GPU [3]. The feed-forward 
process has two kernels, one for calculating the hidden 
nodes (Feed-ForwardIH) and another for calculating the 
output nodes (Feed-ForwardHO). 
 The back-propagation phase consists of the following three 
functions: 
1. DeltaCalculation- This function calculates the errors in

the output layer and hidden layers, so we call it with 1
block containing threads equal to the number of nodes
in the hidden layer, and we use these threads to
calculate the errors (called deltas) in the hidden and
output layers. These deltas will be used to update the
weights in the layers of the GPU-enabled BP-ANN.

2. UpdateInputWeights- This function updates the
weights that connect the input layer to the hidden
layer. So we launch a number of blocks equal to the
number of hidden nodes, and each block has a number
of threads equal to the number of input nodes. Each
block is executed in parallel and inside each block, the
threads update the weights in parallel.

3. UpdateHiddenWeighs- This function updates the
weights that connect the hidden layer to the output
layer. So we launch a number of blocks equal to the
number of output nodes, and each block has a number
of threads equal to the number of hidden nodes. Each
block is executed in parallel, and inside each block the
threads update the weights in parallel.

V. CONCLUSION

The training phase of neural network is very time 
consuming due to the large number of epochs and weight 
updates required to reach an optimal performance. GPU 
parallelization of neural network reduces the training time. 
GPU can improve the speed in comparison to the CPU 
version of neural network. If we need to do training on a 
dataset with small number of attributes the CPU version is 
better. GPU should only be used the data to be processed 
has large number of attributes to benefit a parallelism from 
GPU. 
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